relationship, we will assume F(v) is well known and use the Hugoniot for liquids³ (u_1 =1.2 and u_2 =1.7) to calculate it.

DEPENDENCE OF CALCULATED SHOCK TEMPERATURE ON $(\partial \rho/\partial T)$, AND C_*

Let T_H denote temperature on a Hugoniot curve and T_s denote temperature on an isentrope. Then Eq. (4) relating the temperatures at a volume v_1 on the Hugoniot centered at $(p_0=0, v_0, T_0)$ and on the isentrope through $(p_0=0, v_0, T_0)$ can be written formally as

$$T_{H}(v_{1}, b, C_{v}) = T_{s}(v_{1}, b) + (2C_{v})^{-1} \int_{v_{0}}^{v_{1}} \left[\exp b(v - v_{1})\right] F(v) dv, \quad (5)$$

with $T_s(v_1, b) = T_0 \exp b(v_0 - v_1)$. We will use Eq. (5) to determine the qualitative dependence of shock temperature on $(\partial p/\partial T)_v$ and C_v . Partial differentiation of Eq. (5) with respect to $(\partial p/\partial T)_v$ and use of the identity $C_v[\partial b/\partial (\partial p/\partial T)_v] = 1$ leads to the equation

$$\frac{\partial T_H}{\partial (\partial p/\partial T)_{\nu}} = \frac{T_s(v_0 - v_1)}{C_{\nu}} + \frac{I}{2C_{\nu}^2},\tag{6}$$

where

$$I = \int_{v_0}^{v_1} (v - v_1) \left[\exp b(v - v_1) \right] F(v) dv.$$

The integral I must be positive since $T_H > T_s$ and $(v-v_1) \ge 0$. Thus $\partial T_H / \partial (\partial p/\partial T)_v > 0$ and the slope of the T_H vs $(\partial p/\partial T)_v$ curve is positive. An increase in $(\partial p/\partial T)_v$ in a Walsh-Christian temperature calculation

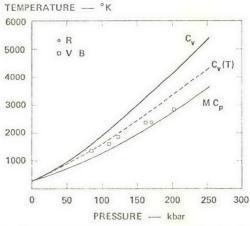


Fig. 1. Shock temperature for carbon tetrachloride. Comparison of calculated values with those obtained experimentally by the "brightness" method. The circle was obtained by Ramsay and the squares by Voskoboinikov and Bogomolov. The line C_r was calculated in the present work using the Walsh–Christian method (constant C_r). The line MC_r was calculated by Mader also using the Walsh–Christian method but using C_p for the value of C_r . The dashed line C_r (T) was calculated in the present work using C_r as a function of temperature. The input data for the calculations are in Table 1. For constant C_r the shock temperature at 150 kbar agrees with that calculated by Dick. ¹³

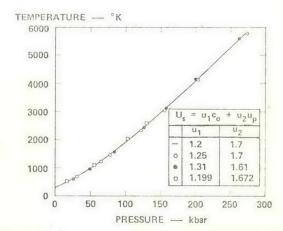


Fig. 2. Shock temperature for carbon tetrachloride. Sensitivity of the calculated temperatures to the form of the Hugoniot. $u_1, u_2 = 1.2, 1.7$ (Ref. 3); 1.25, 1.7 (this work, arbitrary variation of u_1); 1.31, 1.61 (Ref. 7); and 1.199, 1.672. (Recalculated from Ref. 13 by R. D. Dick). The other input data are in Table I.

will produce an increase in shock temperature, but a decrease in $(\partial p/\partial T)_v$ will produce a decrease in shock temperature. Partial differentiation of Eq. (5) with respect to C_v and use of the identity $\partial b/\partial C_v = -b/C_v$ leads to the equation,

$$\frac{\partial T_H}{\partial C_v} = -\left[b\frac{\partial T_H}{\partial (\partial p/\partial T)_v} + \frac{T_H - T_s}{C_v}\right]. \tag{7}$$

Thus $\partial T_H/\partial C_v < 0$ since $\partial T_H/\partial (\partial p/\partial T)_v > 0$, and the slope of the T_H vs C_v curve is negative. In contrast to the former case, an increase in C_v will produce a decrease in shock temperature in a Walsh-Christian calculation, but a decrease in C_v will produce an increase in shock temperature.

The equation

$$-\frac{C_{v}(\partial T_{H}/\partial C_{v})}{(\partial p/\partial T)_{v}[\partial T_{H}/\partial (\partial p/\partial T)_{v}]} = 1$$

$$+\frac{T_{H}-T_{s}}{b[T_{s}(v_{0}-v_{1})+I/2C_{v}]}, \quad (8)$$

obtained by rearranging Eq. (7), is convenient for making a more quantitative estimate of the dependence of shock temperature on $(\partial p/\partial T)_v$ and C_v . Let $\Delta T_H(\delta C_v)$ and $\Delta T_H[\delta(\partial p/\partial T)_v]$ denote the change in shock temperature produced by a small decrease in C_v and a small increase in $(\partial p/\partial T)_v$. Then if second- and higher-order terms are neglected, Eq. (8) can be written as

$$-\frac{\Delta T_H(\delta C_v)}{\Delta T_H[\delta(\partial p/\partial T)_v]} = 1 + \frac{T_H - T_s}{b[T_s(v_0 - v_1) + I/2C_v]}. \quad (9)$$

The right-hand side of Eq. (9) has been evaluated along the Hugoniot curve, and the left-hand side has been calculated for a 10% increase in $(\partial p/\partial T)_{z}$ and a 10% decrease in C_{z} . The results of these calculations are given in Table III and Fig. 3. At a given shock pressure, shock temperature is more sensitive to changes in C_{z}